

4th International Symposium on Enabling Technologies for Proteomics May 14, 2009, Four Seasons Hotel Vancouver

Poster Abstracts

Poster	1 - (Confirmation No. 2660)
Submitted by	Zarrin Eshaghi, Payame Noor university
Contributing Authors	
Abstract Title	Extraction And Determination Of Fatty Acid Ethyl Esters In Hair As
	Biomarkers For Quantitative Assay Of Alcohol
Abstract	Fatty acid ethyl esters (FAEEs) are products in blood of non-oxidative ethanol metabolism. After incorporation in hair, they should be suitable long- term markers of alcohol abuse. This research focuses on basic aspects and recent studies of hair analysis for alcohols. Firstly, biology of hair and sampling of hair specimens have been commented for the sake of correct interpretation of the results from hair analysis. Then the washing method of hair samples and the extraction method for FAEEs in hair have been shown and commented on. Analytical method for analysis have been discussed by the method, namely hollow fiber liquid phase microextraction and gas chromatography-flame ionization detection, HF-LPME-GC-FIDâ€. The outcomes of hair analysis studies have been reviewed into; ethyl palmitate, ethyl oleate and ethyl stearate in hair. Applications of hair analysis to the estimation of alcohols have also been reviewed. Finally, the promising prospects of hair analysis have been described. Keywords: Hair, Alcohol, Fatty acid ethyl esters (FAEEs), hollow fiber liquid phase microextraction (HF-LPME), GC-FID.

Poster	2 - (Confirmation No. 2709)
Submitted by	Mike Moran, University of Toronto
Contributing Authors	M Moran, J St-Germain, P Taylor, J Tong, L Jin, I Stewart, R Ewing, M
	Dharsee, S Trudel
Abstract Title	Phosphorylation profiles associated with FGFR3 kinase expression, ligand
	activation, and drug inhibition
Abstract	Signaling by activated growth factor receptor tyrosine kinases is manifest
	through networks of proteins that are phosphorylated by, and/or bind the
	autophosphorylated receptors. FGF Receptor-3 (FGFR3) is a drug target in
	a subset of human multiple myeloma (MM) tumors, and is mutationally
	activated in some cervical and colon and many bladder cancers, and certain
	skeletal dysplasias. In order to determine the FGFR3 network in MM, mass
	spectrometry was used to identify and quantify protein pY sites modulated
	by FGFR3 activation and inhibition. Label-free quantification of MS ion
	currents and by multiple reaction monitoring revealed an FGFR3 network
	including 45 proteins phosphorylated in response to FGF ligand and
	sensitive to FGFRS initiation. These results demonstrate pharmacouynamic
	was supported in part by funding from the Canada Research Chairs
	Program: Canadian Institutes of Health Research: and the Canadian Cancer
	Society and National Cancer Institute of Canada
	Society and National Cancer Institute of Canada.

Poster	3 - (Confirmation No. 2710)
Submitted by	Lalit Agrawal, NIPGR
Contributing Authors	Subhra Chakraborty, Dinesh Kumar Jaiswal, Sonika Gupta, Asis Datta, and
	Niranjan Chakraborty
Abstract Title	Comparative Proteomics of Tuber Induction, Development and Maturation
	Reveal the Complexity of Tuberization Process in Potato (Solanum
	tuberosum L.)

A hoter of	Tuberingtion in poteto (Colonym tubercours L.) is a developmental success
ADSTRACT	Tubenzation in potato (Solanum tuberosum L.) is a developmental process
	that serves a double function, as a storage organ and as a vegetative
	propagation system. It is a multistep, complex process and the underlying
	mechanisms governing these overlapping steps are not fully understood. To
	understand the molecular basis of tuberization in potato, a comparative
	proteomic approach has been applied to monitor differentially expressed
	proteins at different development stages using two-dimensional gel
	electrophoresis (2-DE). The differentially displayed proteomes revealed 219
	protein spots that change their intensities more than 2.5 fold. The LC ES
	MS/MS analysis that change their intensities more than 2.5-1010. The EC-EC-
	wishing that is alude and it and a such the among if a matrice
	proteins that include predicted and novel tuber-specific proteins.
	Nonhierarchical clustering revealed coexpression patterns of functionally
	similar proteins. The expression of reactive oxygen species catabolizing
	enzymes, viz., superoxide dismutase, ascorbate peroxidase and catalase,
	were induced by more than 2-fold indicating their possible role during the
	developmental transition from stolons into tubers and suggest that the
	generation of ROS may be one of the early and determinant events during
	tuber initiation in potato, hitherto undiscovered. We demonstrate that nearly
	100 proteins, some presumably associated with tuber cell differentiation
	regulate diverse functions like protein biogenesis and storage, bioenergy
	regulate unverse functions like protein biogenesis and storage, bioenergy
	and metabolism, and cell defense and rescue impinge on the complexity of
	tuber development in potato.

Poster	4 - (Confirmation No. 2711)
Submitted by	John M. Lindsay, Denator AB
Contributing Authors	Marcus Svensson, Karl Sköld, Maria Fälth, Per E Andrén
	Per Svenningsson, Mats Borén
Abstract Title	Heat Stabilization of the Tissue Proteome: a new technology for improved
	proteomics
Abstract	Immediately after sampling, proteases and other protein-modifying enzymes
	change proteome composition. The results from subsequent analyses
	reflect a mix of in vivo proteome and degradation products. Important
	information about the pre-sampling state of the tissue may be distorted or
	destroyed, leading to reduced reproducibility between samples and even
	faulty conclusions. This problem is addressed by rapid sample inactivation
	In a novel tissue stabilization system (Stabilizor 11, Denator AB) which halts
	post-sampling modifications ineversibly by neat induced protein
	Tissue complex were collected from freebly accritice meyee and either energy
	frozen or immediately stabilized using the Stabilizor T1 system special
	focus was placed in keeping the post-mortem times as low as possible
	Samples were homogenized frozen using a Retsch ball with 5 mm steel
	halls. After treatment tissue samples were analyzed with downstream
	techniques such as western blotting, MAI DI-MS or Nano-I C-MS according
	to established and published protocols. When looking at the low mass
	content (< 10 kDa), the results show a large number of detected peptides in
	the untreated samples identified as protein degradation fragments from
	highly expressed proteins such as hemoglobin, dynamin, NADH
	dehydrogenase. In contrast, the peptides detected in the stabilized samples
	were identified as known neuropeptides, endogenous peptides and small
	proteins. The inhibition of phosphorylase is shown to be improved compared
	to a common chemical inhibitor. After stabilization treatment the levels of
	phosphorylated CREB, GSK and MAPK were maintained up to 2 hours in
	room temperature treatment whilst the levels in untreated tissue decreased.

Submitted byMiriam Lynn, University of British ColumbiaContributing AuthorsMiriam A. McAndrew-Lynn, W. Robert McMasterAbstract TitleQuantitative differential proteomic analysis of Leishmania membrane proteins to identify potential drug targetsAbstractLike many protozoan parasites, Leishmania, the causative agent of leishmaniasis, poses an enormous public health predicament in many developing countries throughout the world, impacting a possible 350 million people worldwide. Presently front line drugs are outdated, have serious side-effects and some associated drug resistance, emphasizing the need for safer, more effective drugs to combat leishmaniasis. In the search for more effective drug targets against Leishmania genome is essentially constitutively expressed, such that most protein regulation occurs post-translationally. Therefore future studies need to focus on Leishmania proteome profiling to identify potential upregulated pathogenesis targets and consequently drug targets. By focusing on Leishmania membrane proteome profiling, novel accessible targets that are differentially regulated at the protein level throughout the Leishmania lifecycle may be identified. Specifically, the stable isotope labeling iTRAQ technology combined with quantitative mass spectrometry is being anglied to identify differential membrane proteomic profiles between	Poster	5 - (Confirmation No. 2713)
Contributing AuthorsMiriam A. McAndrew-Lynn, W. Robert McMasterAbstract TitleQuantitative differential proteomic analysis of Leishmania membrane proteins to identify potential drug targetsAbstractLike many protozoan parasites, Leishmania, the causative agent of leishmaniasis, poses an enormous public health predicament in many developing countries throughout the world, impacting a possible 350 million people worldwide. Presently front line drugs are outdated, have serious side-effects and some associated drug resistance, emphasizing the need for safer, more effective drugs to combat leishmaniasis. In the search for more effective drug targets against Leishmania genome is essentially constitutively expressed, such that most protein regulation occurs post-translationally. Therefore future studies need to focus on Leishmania proteome profiling to identify potential upregulated pathogenesis targets and consequently drug targets. By focusing on Leishmania membrane proteome profiling, novel accessible targets that are differentially regulated at the protein level throughout the Leishmania lifecycle may be identified. Specifically, the stable isotope labeling iTRAQ technology combined with quantitative mass spectrometry is being applied to identify differential membrane proteomic profiles between	Submitted by	Miriam Lynn, University of British Columbia
Abstract TitleQuantitative differential proteomic analysis of Leishmania membrane proteins to identify potential drug targetsAbstractLike many protozoan parasites, Leishmania, the causative agent of leishmaniasis, poses an enormous public health predicament in many developing countries throughout the world, impacting a possible 350 million people worldwide. Presently front line drugs are outdated, have serious side-effects and some associated drug resistance, emphasizing the need for safer, more effective drugs to combat leishmaniasis. In the search for more effective drug targets against Leishmania, studies are identifying genes that are upregulated in the infective lifecycle stage, the amastigote. However, recent studies have shown that the Leishmania genome is essentially constitutively expressed, such that most protein regulation occurs post-translationally. Therefore future studies need to focus on Leishmania proteome profiling to identify potential upregulated pathogenesis targets and consequently drug targets. By focusing on Leishmania membrane proteome profiling, novel accessible targets that are differentially regulated at the protein level throughout the Leishmania lifecycle may be identified. Specifically, the stable isotope labeling iTRAQ technology combined with quantitative mass spectrometry is being applied to identify differential membrane proteomic profiles between	Contributing Authors	Miriam A. McAndrew-Lynn, W. Robert McMaster
Proteins to identify potential drug targetsAbstractLike many protozoan parasites, Leishmania, the causative agent of leishmaniasis, poses an enormous public health predicament in many developing countries throughout the world, impacting a possible 350 million people worldwide. Presently front line drugs are outdated, have serious side-effects and some associated drug resistance, emphasizing the need fo safer, more effective drugs to combat leishmaniasis. In the search for more effective drug targets against Leishmania, studies are identifying genes that are upregulated in the infective lifecycle stage, the amastigote. However, recent studies have shown that the Leishmania genome is essentially constitutively expressed, such that most protein regulation occurs post-translationally. Therefore future studies need to focus on Leishmania proteome profiling to identify potential upregulated pathogenesis targets and consequently drug targets. By focusing on Leishmania membrane proteome profiling, novel accessible targets that are differentially regulated at the protein level throughout the Leishmania lifecycle may be identified. Specifically, the stable isotope labeling iTRAQ technology combined with quantitative mass spectrometry is being annlied to identify differential membrane proteomic profiles between	Abstract Title	Quantitative differential proteomic analysis of Leishmania membrane
Abstract Like many protozoan parasites, Leishmania, the causative agent of leishmaniasis, poses an enormous public health predicament in many developing countries throughout the world, impacting a possible 350 million people worldwide. Presently front line drugs are outdated, have serious side-effects and some associated drug resistance, emphasizing the need for safer, more effective drugs to combat leishmaniasis. In the search for more effective drug targets against Leishmania, studies are identifying genes that are upregulated in the infective lifecycle stage, the amastigote. However, recent studies have shown that the Leishmania genome is essentially constitutively expressed, such that most protein regulation occurs post-translationally. Therefore future studies need to focus on Leishmania proteome profiling to identify potential upregulated pathogenesis targets and consequently drug targets. By focusing on Leishmania membrane proteome profiling, novel accessible targets that are differentially regulated at the protein level throughout the Leishmania lifecycle may be identified. Specifically, the stable isotope labeling iTRAQ technology combined with quantitative mass spectrometry is being applied to identify differential membrane proteomic profiles between		proteins to identify potential drug targets
the promastigote and the amastigote lifecycles in Leishmania infantum. Comparative studies in L. mexicana will identify common membrane targets in both species upregulated in the infective amastigote lifecycle stage as	Abstract	Like many protozoan parasites, Leishmania, the causative agent of leishmaniasis, poses an enormous public health predicament in many developing countries throughout the world, impacting a possible 350 million people worldwide. Presently front line drugs are outdated, have serious side-effects and some associated drug resistance, emphasizing the need for safer, more effective drugs to combat leishmaniasis. In the search for more effective drug targets against Leishmania, studies are identifying genes that are upregulated in the infective lifecycle stage, the amastigote. However, recent studies have shown that the Leishmania genome is essentially constitutively expressed, such that most protein regulation occurs post-translationally. Therefore future studies need to focus on Leishmania proteome profiling to identify potential upregulated pathogenesis targets and consequently drug targets. By focusing on Leishmania membrane proteome profiling, novel accessible targets that are differentially regulated at the protein level throughout the Leishmania lifecycle may be identified. Specifically, the stable isotope labeling iTRAQ technology combined with quantitative mass spectrometry is being applied to identify differential membrane proteomic profiles between the promastigote and the amastigote lifecycles in Leishmania infantum. Comparative studies in L. mexicana will identify common membrane targets in both species upregulated in the infective amastigote lifecycle stage as possible drug targets.

Poster	6 - (Confirmation No. 2715)
Submitted by	Dominik Domanski, University of Victoria Proteomics
Contributing Authors	Dominik Domanski, Michael Kuzyk, Leanne Ohlund, Tyra Cross, Christoph Borchers
Abstract Title	Absolute Quantitation of Phosphorylation Dynamics in the Analysis of Human Breast Cancer Signaling Pathways Using Multiple Reaction Monitoring MS
Abstract	Breast cancer is often related to genetic defects resulting in aberrations in the function of the epidermal growth factor receptor (EGFR) and estrogen receptor (ER) signaling pathways. Despite the fact that signal transducing phosphoproteins are centrally involved in tumorigenesis, cancer progression, and drug susceptibility, indirect methods from genomic technologies that only assess genetic aberrations are still primarily used in cancer research. Individualized treatment selection and drug development, however, will require a thorough and quantitative understanding of actual protein expression and phosphorylation dynamics of signaling pathways. We describe a novel mass spectrometry (MS)-based proteomic assay to directly investigate phosphorylation levels of select signal transducing cancer-related phosphoproteins involved in the EGFR and ER signaling pathways with absolute quantitation for clinical relevance. Our method, termed phosphatase-directed phosphopeptide quantitation (PPQ) with multiple reaction monitoring (MRM) MS detection, can obtain absolute quantitation of select proteins and their site-specific phosphorylation levels.

tested a number of phosphopeptides of interest from ER and EGFR
way proteins. These were synthesized as natural and heavy-isotope-
led standards in both, phosphorylated and non-phosphorylated form,
then combined at different ratios and different amounts in different
ple matrix backgrounds. The PPQ-MRM method was able to absolutely
ntify levels of phosphorylation with CVs similar to the direct MRM
roach, with sensitivity in the fmol range. This method could potentially
w the profiling of EGFR and ER signaling networks at a high throughput,
ntitation accuracy, and sensitivity, allowing the creation of detailed
iles or maps of signaling networks in breast cancer tumor samples.

Poster	7 - (Confirmation No. 2716)
Submitted by	Geraldine Walsh, Biomedical Research Centre
Contributing Authors	Geraldine M. Walsh, Arash Khosrovi-Eghbal, Jason C. Rogalski and
	Juergen Kast
Abstract Title	Extensive Temporal Analysis of Platelet Storage Lesion using Quantitative
	Proteomics
Abstract	Platelets are key components of the haemostatic system and an essential
	transfusion product. Their storage time prior to transfusion is limited to 5
	days due to the storage temperature (22°C), which leads to increased risk of
	bacterial contamination, and to the Platelet Storage Lesion (PSL), a
	progressive loss of platelet function observed during storage, whose
	underlying mechanisms are not well elucidated. Here, we expand on our
	previous work by conducting more extensive temporal analyses of stored
	platelet concentrates, provided by Canadian Blood Services.
	Platelets were sampled on storage days 1, 5, 7 and 10 (medium time
	course) and days 1, 7, 12 and 15 (long time course), isolated, washed in
	physiological buffer and lysed, followed by in-solution digestion with trypsin.
	Peptides were labeled with 4-plex ITRAQ reagents, separated by SCX,
	analyzed on an LC QSTAR-XL and quantified using Protein Pilot I M
	software (all Applied Blosystems).
	For the medium time course, an average of 287 proteins were quantifiable
	(n=4 experiments), with 145 quantifiable proteins found to be common to all
	4 medium time course datasets. For the long time course, on average 406
	proteins were quantiliable (n=2 experiments). In both time courses, between
	25-50% of the quantinable proteins were found to be significantly up- of
	down-regulated at one or more of the time-points. Key hallmarks of PSL
	include alterations in glucose metabolism, release of granules and increase
	anzyme CADDH, particularly by day 10. Also, a prograssive decrease in
	enzyme GAF Dri, particularly by day 10. Also, a progressive decrease in
	dramatic at the longer time points. Many of these proteins have not been
	previously been reported as playing a role in DSL and are surroutly
	previously been reported as playing a role in FSL and are currently

Poster	8 - (Confirmation No. 2717)
Submitted by	Rachel Kozlowski, UVic GBC Proteomics Centre
Contributing Authors	Jun Han, Christoph Borchers
Abstract Title	Comprehensive Profiling of Human Plasma Phospholipids by Combining
	Direct Infusion and LC FTMS.
Abstract	Introduction
	Irregularity of lipid abundances, dyslipidemia, is associated with many

Abstract	Integrins are membrane spanning heterodimers, which play a major role in cell signalling and physiology. They relay signals across the membrane by interaction with intracellular adaptor proteins, which bind to their small intracellular tails. Several interaction partners of integrins have been described, their binding being dependent on the activation status of the cell. However, the detailed mechanism of regulation of these signalling processes is not fully understood and requires further investigation. Formaldehyde cross linking of cells paired with affinity enrichment and mass spectrometry is a powerful method to study protein complexes and was established successfully in our lab to study myc-tagged proteins. However, to analyze integrin complexes we wanted to use antibodies against the endogenous proteins. This requires that the corresponding epitopes are not destroyed by formaldehyde modification. We tested eight different monoclonal antibodies for immunoprecipitation of integrin beta 1 from formaldehyde treated Jurkat cells. Two of them did not precipitate cross linked complexes, whereas the remaining six were successfully applied. Investigation of one cross linked complex was performed by mass spectrometry and revealed that it was composed of integrin beta 1 and integrin alpha 4, which is a known heterodimer present in Jurkat cells. This proves that formaldehyde cross linking together with immunoprecipitation by antibodies against endogenous proteins can be used for investigation of complexes and analyzing changes in composition of these complexes following stimulation of the set of these complexes following stimulation of the integrins, which will help to understand the signalling estimation.
	processes taking place through these neterodimers.

prevalent diseases in North America such as diabetes, metabolic syndrome
and cardiovascular disease. The identification and study of various lipids
and their irregularities in key human tissues as well as blood plasma is
important to a complete understanding of the role lipids play in these
diseases. The development of efficient accurate diagnostic techniques is
therefore necessary for efficient accurate treatments. To this end, the
development of a comprehensive profile of linids, such as phospholinids, in
burger blood plooms will have the way towards accurate evaluation of
discoss accurate evaluation of
diseases associated with dyslipidemia.
Method
Phospholipids were isolated from 3 different sets of human plasma samples
by liquid-liquid extraction with CHCI3/H2O/CH3OH. These extracted lipids
were analyzed by direct infusion- and LC-FTMS on a 12-Tesla FTICR mass
spectrometer in (+) and (-) ESI mode. After internal mass calibration,
custom software was used for monoisotopic peak pick up and subsequent
peak alignment. Rational molecular formulae were generated using
accurate masses and searched against lipid and metabolome databases
(Lipid MAPS, HMDB and METLIN). For peaks that returned hits in multiple
phospholipid classes or subclasses, offline LC fractionation and FTMS/MS
was conducted to further confirm phospholipid identities.
Preliminary Results
Our preliminary results have shown that >200 and >500 phospholipids have
been assigned using direct infusion and LC-FTICRMS, respectively. The
phospholipid class distribution remained well correlated across LCMS and
direct infusion data. After combining all unique masses obtained from each
set of spectra, over 500 phospholipids were identified with mass errors of <
2ppm. However, approximately 80% of these hits had associated errors of
< 100m The most abundant linid classes in human plasma were found to
be glycerophosphocholines, glycerophosphoethanolamines and
alvcerophosphoserines. In positive ion mode, these classes represented
approximately 50% 30% and 10% of peaks identified respectively. In
negative ion mode, these classes made up approximately 25%, 15% and
50% of total neak composition respectively. The less abundant classes in
order of abundance, included alveeronboenboinositols, alveeronboenbates
and glycerophosphoglycerols. In addition to these identified linids, there
and give opprosphogive los. In addition to these identified lipits, there were also a significant number of peaks (> 000) for which po hits were
returned A proliminary analysis of a number of these peaks revealed highly
returned. A preinfinitary analysis of a number of these peaks revealed highly
probable candidates for undertained prospholipids. Currently, MS/MS
experiments are being undertaken to elucidate the structure of these
potential phospholipids. The preliminary results of this study have shown
that combining direct infusion and LCIVIS with ultranign resolution of FIICR
NIS, has provided one of the most comprehensive profiles of human plasma
phospholipids in a single experiment. These phospholipid identities will
ultimately be used as a model list for targeted screening of potential
phospholipid biomarkers for dyslipidemia against 20 human metabolic
syndrome patient samples and control patient samples. Currently we are in
the process of identifying and analyzing the potential difference in lipid
profiles of these 20 human plasma samples.

Poster	9 - (Confirmation No. 2719)
Submitted by	Cordula Klockenbusch, Biomedical Research Centre
Contributing Authors	Juergen Kast
Abstract Title	Investigation of integrin beta 1 complexes by formaldehyde cross linking
	and mass spectrometry

phosphorylation site localization
Combining the described assay with stable isotopic labeling of amino acids
in cell culture (SILAC), we are currently tracking thousands of
phosphorvation events which are induced in HeLa cells during Salmonella
infection. Cells are harvested between 0 and 20 min post infection to
generate a dynamic profile for each phosphorylation event detected as
Salmonella invades its host. Several interesting pathways not previously
linked to Salmonella infection have been identified. Future experiments will
compare results from wild type Salmonella infections to heat killed
Salmonella and mutant strains for specific Salmonella effectors. The
described work is expected to represent one of the largest
phosphoproteomic studies to date, and also to yield a vast amount of
information regarding phosphorylation events induced by specific players in
Salmonella virulence.

Poster	11 - (Confirmation No. 2725)
Submitted by	Chris Hao Pu, UBC ChiBi
Contributing Authors	
Abstract Title	Fishing for parkin ubiquitin ligase substrates
Abstract	Ubiquitylation is a major post-translational modification which relies on a
	vast network of about five hundred E3 ubiquitin ligases in human cells. It is
	involved in several processes such as proteolysis (via the ubiquitin
	proteasome system; UPS), vesicle trafficking and DNA damage. Mutations
	in PARK2, which encode parkin E3 ligase, account for half of autosomal
	dominant juvenile parkinsonism cases, an early form of Parkinson√¢,Ǩ,N¢s
	disease. Multiple PARK2 mutations underlie the RING domain, which
	promotes E3 ligase activity suggesting an inability for substrate degradation
	may trigger neurodegeneration. We first employed parkin
	immunoprecipitation to identify dynamic interactors of which a proportion will potentially be substrates. Preliminary MS data suggested enrichment for
	proteasomal components as well as stress proteins in parkin transfected
	cells, in accordance with parkin $\sqrt{\phi}$, $C^{,}$, $\tilde{N}\phi$ s UPS connection and the
	possibility of parkin targeting misfolded proteins. We have also undertaken a
	second approach relying on purification of the ubiquitin proteome using His-
	biotin-tagged ubiquitin. The rationale is that overexpression of wild-type
	parkin should lead to an enrichments of putative substrates due to increased
	parkin mediated ubiquitination. The challenge is to establish a purification
	scheme enabling identification of low abundant ubiquitinated proteins to
	increase the chance of detecting putative parkin substrates.

Poster	12 - (Confirmation No. 2727)
Submitted by	Nancy Fang, CHIBI, UBC
Contributing Authors	Nancy Fang, Mayumi Iwashita and Thibault Mayor
Abstract Title	Heat-Shock Induced Misfolded Cytoplasmic Proteins Are Ubiquitinated by a
	Network of E3s in Saccharomyces cerevisiae.
Abstract	A significant portion if not the majority of UPS substrates corresponds to misfolded and damaged proteins that are targeted by protein quality control (PQC) machinery. Dysfunction of the UPS can result in the accumulation of misfolded proteins and formation of protein aggregates that can cause extensive cellular damage. This has been associated to various human diseases, including neurodegenerative diseases, cancer, heart disease and
	diabetes. To gain a better understanding of the pathogenesis of these diseases, it is necessary to investigate how the UPS targets PQC substrates

for degradation. To obtain a better insight of the PQC system in cytosol, we employed heat-shock stress to globally increase misfolded protein levels in yeast. A vast increase of total poly-ubiquitination levels is the landmark of
showed that heat-shock induced poly-ubiquitination is a good model to study
PQC machinery targeting cytosolic misfolded species. For quantitative
comparison, untreated and heat-shock treated cells that are expressing his8-tagged ubiquitin were differentially labeled with 14N and 15N and were subsequently subjected to enrichment of ubiquitinated proteins by nickel chromatography. We showed that the majority of proteins displaying an increase ubiquitination signal were localized in the cytoplasm. We then screened for genes defective in heat-shock induced ubiquitination using a selected deletion library of UPS genes. We identified several putative E3
ligases involved in heat-shock response, including VPS8 and GRR1 that displayed a reduced viability after heat-shock and HUL5. After comparing wild type and HUL5 cells by quantitative mass spectrometry, we determined that about a fifth of the proteins ubiguitylated after heat-shock required
HUL5. The current data suggests that there is likely a network of several
E3s that is involved in targeting wide range of PQC substrates in cytosol in yeast.

Poster	13 - (Confirmation No. 2731)
Submitted by	Yu Zi (emma) Zheng, CHiBi, BMB, CPS
Contributing Authors	Cecile Boscher, Michelle M. Hill, Robert G. Parton, Ivan R. Nabi, Leonard J. Foster
Abstract Title	Quantitative Proteomics Analysis of Cell Surface Caveolae in Mammary Epithelial tumor Cells
Abstract	Caveolae are a class of membrane microdomains that are microscopically distinguishable stable invaginations of the cell plasma membrane. The formation of caveolae depends on the presence of specific structural proteins caveolin-1 in non-muscle cells and others like the recently reported caveolae associated protein Cavin/Ptrf. Caveolae have well-characterized roles in signal transduction and endocytosis, however non-caveolar roles for caveolin have also been proposed. Caveolae and caveolin-1 are closely associated with detergent-resistant membranes (DRMs) whose detergent-resistance and low density allow them to be enriched biochemically. We performed quantitative proteomic analysis on DRMs from cell lines expressing caveolae, caveolin-1 but no caveolae and limiting amounts of caveolin-1 in order to characterize the different protein composition of DRMs in cells expressing caveolae and/or caveolin-1. We found that the loss of caveolae on the plasma membrane has a dramatic effect on the DRM content of a cell. Multiple proteins were identified to be selectively associated with DRMs in caveolae-expressing cells, such proteins included known raft/caveolae associated proteins caveolin-1, Ptrf and flotillins, signaling proteins such as MAP kinase, tyrosine protein kinase Fyn, R-Ras and multiple G protein subunits, as well as actin and filamin indicating the connection between rafts/caveolae and microfilaments networks.

Poster	14 - (Confirmation No. 2733)
Submitted by	Chengcheng Zhang, University of British Columbia
Contributing Authors	Daniel Evans, Ronald Beavis, Juergen Kast
Abstract Title	Protein Interaction Environments Comparison Using The Global Proteome Machine database

Abstract	By definition, protein interaction environments are represented by all of the
	proteins interacting with a protein of interest, or sharing its cellular
	localization and having the potential to form such interactions or to block
	them. Their identification for a given protein is the focus of functional
	proteomics studies. With the number of such studies rapidly increasing,
	proteomics databases are increasingly likely to already contain this type of
	information. The Global Proteome Machine database (GPMDB) is the
	largest curated and publicly available data repository for proteomics
	information derived from tandem mass spectrometry. The GPMDB could
	potentially allow a novel way to observe protein interaction environment, i.e.
	by parsing the database for proteins that are commonly coincident and have
	highly correlated occurrences and intensities. Using the stringent criteria we
	developed, we have compared the protein interaction environments of
	certain G Pases, i.e. Rap1, RnoA and CDC42, particularly the proteins that
	are snared by these G Pases and the ones that unique to them, and also
	the significance of these proteins, which reveals the different and
	overlapping context where these enzymes function. Our results demonstrate
	that GPMDB can be used to gain insight into the protein interaction
	environment individually, and for the comparison among environments.

Poster	15 - (Confirmation No. 2736)
Submitted by	Yuan Fang, Center for High-Throughput Biology, UBC
Contributing Authors	Lindsay D. Rogers, Leonard J. Foster
Abstract Title	Global Ser/Thr/Tyr phosphorylation in Salmonella
Abstract Title Abstract	Global Ser/Thr/Tyr phosphorylation in Salmonella Currently, few studies are done on the phosphorylation events in prokaryotes. It was traditionally believed that phosphorylation in bacteria is at least 10-fold less than in eukaryotes and mainly on His/Asp residues. With the recent advances in mass-spectrometry based proteomics, global phosphorylation studies in E. coli and B. subtilis have revealed evolutionarily conserved phosphorylation sites on Ser/Thr/Tyr residues in bacteria (1,2). Salmonella enteric is an intracellular bacteria pathogen that causes enteritis and typhoid fever, and is an important model organism for studying host- pathogen interactions. Salmonella uses two type III secretion systems to inject effector proteins into the host cell to facilitate invasion and intracellular survival, however, little is known about whether phosphorylation plays a role in this process. We have used metal-oxide chromatography to enrich phosphopeptides from Salmonella lysates for subsequent analysis on a LTQ-Orbitrap. With optimized conditions in peptide fractionation by isoelectric focusing and phosphopeptide enrichment, we are able to detect 150 non-redundant Salmonella phosphopeptides. By comparing the phosphorylation profiles between the stationary and log phase cultures (the latter yields invasive Salmonella), we have identified several phosphorylation and Salmonella virulence. Reference: 1. B,M. et al. Mol Cell Proteomics. 2008 Feb;7(2):299-307.
	Reference: 1. B,M. et al. Mol Cell Proteomics. 2008 Feb;7(2):299-307. 2. B,M., et al. Mol Cell Proteomics. 2007 Apr;6(4):697-707.

Poster	16 - (Confirmation No. 2742)
Submitted by	Farzin Khosrow-Khavar, Department of Biochemistry, UBC
Contributing Authors	Alex Ng, Dr. Thibault Mayor (principal investigator)

Abstract Title	Characterizing the Saccharomyces cerevisiae Cytoplasmic Protein Quality
Abstract	Control System Using Model Substrates A significant pool of aberrant proteins is targeted by the protein quality control (PQC) machinery of the ubiquitin system in the cytoplasm of eukaryotic cells. The array of substrates targeted by the PQC system remains elusive. The ubiquitin system relies on a vast network of proteins. For instance, in the human genome there are over 500 putative E3 ligases. We will use temperature-sensitive model substrates to characterize the PQC system targeting aberrant proteins within the cell. We are currently building a library of temperature-sensitive mutants corresponding to cytoplasmic proteins that are specifically degraded at the non-permissive temperature. In a preliminary screen, we identified two potential candidate substrates that are temperature-sensitive alleles of glutamyl-tRNA synthetase (GUS1) and pyrroline-5-carboxylate reductase (PRO3) with half-lives of 45 and 40 minutes respectively, as determined by cycloheximide chase experiments. The PQC system targeting these substrates will be identified by screening for all known and putative E3 ligase deletion strains and chaperone proteins (CPs) that prevent degradation of these essential proteins and thus restore viability at the non-permissive temperature. Upon identification of E3 ligases and chaperone proteins targeting the model substrates for turnover, the physiological targets of ligases and CPs will be determined using
	ן קטמותומתייב ווומסט טעבנו טווופת א.

Poster	17 - (Confirmation No. 2743)
Submitted by	Vincent Chen, University of British Columbia
Contributing Authors	Christian C. Naus, Leonard J. Foster
Abstract Title	Specific Sites of Ubiquitylation and Components of the Ubiquitin
	Proteasome System (UPS) Associated with Gap Junction Protein
	Connexin43
Abstract	The aberrant expression of the gap junction protein connexin43 (Cx43) is
	associated with a range of debilitating pathologies including the propagation
	of stroke damage and the progression of malignant tumors. Using
	quantitative peptide-level dimethylation and LC-MS/MS, we have identified
	components of the ubiquitin-proteasome system (UPS), a regulatory
	network implicated in the trafficking and degradation of ion channels and
	membrane receptors. Amongst the proteins found to associate with Cx43 at
	gap junction in C6 cells and primary mouse astrocytes, we have identified
	ring finger-protein TRIM a component of the cullin-ring ubiquitin ligases,
	ubiquitin, and unexpectedly, lid components of the (26s) proteasome.
	Serving as further evidence, we additionally identified the specific sites of
	Cx43 upiquitylation and associated K48-linked polyupiquitin chains, which
	turneyer of the gen junction protein. Findings presented within this study
	revide mechanistic insights into the post translational regulation and
	trafficking of gap junction protoing, and more generally will serve as a
	foundation for future investigations related to aberrant levels of Cx43 in a
	variety of diseases. Acknowledgements: Funded by a grant from the
	Canadian Institutes of Health Research: V.C.C. holds a Heart & Stroke
	Foundation of Canada Post-doctoral Fellowshin: L. J.F. holds a Canada
	Research Chair in Organellar Proteomics: C.C.N. holds a Canada Research
	Chair in Gap Junctions and Disease.

Poster	18 - (Confirmation No. 2750)
Submitted by	Inga Wilde, Dept. of Biochemistry and Molecular Biology, UBC
Contributing Authors	Maria Brack, Thibault Mayor: Dept. of Biochemistry and Molecular Biology,
	UBC, Ca
Abstract Title	Mass Spectrometric Analysis of the Composition of Protein Aggregates
	Induced upon Proteasome Inhibition
Abstract	Protein aggregation in the cell is connected to certain neurodegenerative
	disorders, e.g. Parkinson's Disease (PD). Protein aggregates can also be
	induced by proteasome inhibition in cell culture. Most proteins targeted for
	proteasomal degradation are labelled with ubiquitin, which is also found
	enriched in protein aggregates in PD. Using human neuroblastoma cells, we
	determined that upon chemical proteasome inhibition ubiquitin-enriched
	aggregates are induced. We established a procedure implementing a
	sucrose gradient to enrich for these induced aggregates. Preliminary MS
	analysis showed that a large number of proteins could be identified in
	sucrose fractions derived from cells treated with MG132 but not from control
	DMSO-treated cells, e.g. several heat shock proteins, the ubiquitin and
	ribosomal protein S27a precursor, dynein, vimentin and internexin. These
	data suggest that proteasome inhibition has a broad impact on the proteome
	and that it induces the aggregation of a large variety of proteins. We are
	currently repeating the experiment using SILAC.

Poster	19 - (Confirmation No. 2752)
Submitted by	Julian Saba, Thermo Fisher Scientific
Contributing Authors	Zhiqi Hao, Jae C Schwartz, Andreas Huhmer
Abstract Title	Protein N- and C-terminal Sequencing Using Electron Transfer Dissociation
	Mass Spectrometry
Abstract	Electron transfer dissociation (ETD), compared to collisional activation, is
	relatively insensible to the size, the amino acid composition and post-
	translational modifications of peptides or proteins. The fact that ETD
	randomly cleaves backbone bonds makes it an advantageous tool for large
	peptide and intact protein analysis. ETD of intact proteins performs with high
	efficiency, generating very informative, yet extremely complex spectra which
	contain highly charged product ions that are difficult, or even impossible to
	resolve at unit resolution. ETD was recently implemented in a hybrid linear
	ion trap - Orbitrap mass spectrometer. The high resolution and accurate
	mass of the Orbitrap would greatly facilitate the analysis of intact proteins
	using ETD. For unit resolution instruments, proton transfer reaction (PTR)
	following ETD was developed to reduce spectral complexity. PTR removes
	protons from the multiply charged product ions, generating a simplified
	spectrum that contains product ions of resolvable charge states at unit
	resolution. PTR has recently implemented in LTQ XL under instrument
	control software. In this study, ETD was applied to proteins top-down
	analysis both in hybrid linear ions trap and in unit-resolution linear trap. ETD
	combined with accurate mass and high resolution was employed to study
	optimized conditions for intact protein sequencing. The performance of PTR
	for EID spectra simplification was evaluated. The utility of EID-PTR
	approach for intact protein analysis in unit-resolution linear trap was also
	Using FTD with accurate mass and high resolving power standard intact
	proteins ranging in size from 8 kDa to 46 kDa were analyzed. The resulting
	spectra are information rich, containing multiply charged c/z, type of product
	ions which are well resolved. The optimized ratio of analyte cation and ETD
	reagent anion was investigated for maximum sequence coverage. The

optimized ETD reaction time for maximum sequence coverage was found to be significantly shorter than ETD reaction time for peptide fragmentation. Longer ETD reactions lead to decreased overall sequence coverage while N- and C-terminal sequence coverage was increased. When ETD of intact proteins was performed in unit-resolution instrument, multiply charged product ions in the resulting spectra could not be resolved adequately. Thus, reducing product ion charge state to produce simplified spectra is necessary for data interpretation. Charge reduction can be achieved either by extended ETD reaction, or by PTR. Our results indicated that c/z. type ions generated by extended ETD reaction contain one or more extra hydrogen than expected, due to charge reduction through multiple electron transfers. These ions are excluded from identification by database search software due to the unexpected mass shift. Furthermore, extended ETD reaction generated secondary fragmentation products which interfere with data analysis. PTR, which reduces product ion charge state by subtracting protons, generates c/z. type ions of expected mass for data analysis software. Our data from intact proteins up to 30 kDa indicated that PTR following ETD in linear trap significantly improves sequence coverage when compared to ETD alone. The utility of ETD-PTR in unit resolution
when compared to ETD alone. The utility of ETD-PTR in unit resolution
linear trap for infact protein analysis, as well as its limitations, will be discussed.

Poster	20 - (Confirmation No. 2755)
Submitted by	Alain Doucet, UBC
Contributing Authors	Alain Doucet and Christopher Overall
Abstract Title	ATOMS: A Protease Substrate Validation Method Using Quantitative
	Proteomics
Abstract	Recently, several methods to discover in vivo protease substrates based on high throughput screening of biological samples were developed. These techniques reveal candidate protease substrates that need to be validated. The direct action of the protease on the target protein and the cleavage sites are confirmed by incubation of the candidate substrate and the protease of interest in vitro. The protease cleavage sites are usually identified by N-terminal sequencing of the protein fragments resolved by electrophoresis. To be successful, pure preparation of the targeted protein is required and N-terminal sequencing reactions should be performed separately for each proteolytic fragment. This is particularly challenging when analyzing high molecular weight, complex proteins generating multiple fragments upon limited proteolysis. Moreover, the low resolution of SDS-PAGE does not allow the separation of fragments differing only by a few residues. Here, we developed a quantitative proteomics method named ATOMS (Amino Terminal Oriented Mass Spectrometry of substrates) as an alternative/complement technique to identify protease cleavage sites generated by complex, high molecular weight proteins in vitro. ATOMS is based on the fact that upon proteolysis, protein fragments present new N-termini that are not found in the undigested protein. The goal of ATOMS is to identify these neo N-termini using isotopic labeling of protein amino groups (N-terminal and lysines) and tandem mass spectrometry analysis. Peptides generated by proteolysis and bearing a neo N-termini are represented by a heavy-labeled singleton in our quantitative tandem mass spectrometry analyses while protein natural N-termini are found as doublets. All other peptides are ignored. Sequencing the heavy-labeled singletons by tandem mass spectrometry reveal the proteolytic sites. To test our method we used laminin and fibronectin, two high molecular weight and complex

proteins found in extracellular matrices as target proteins. A control
experiment shown a heavy to light (H/L) ratio centered to 1 for peptides not
affected by protease activity. A small number of outliers were identified and
eliminated from future analyses. Digestion of denatured fibronectin and
laminin with GluC, a serine protease specifically cleaving after glutamate
residues, resulted in the identification of 21 neo N-termini and all of them
conformed to the GluC cleavage specificity. Proteolysis of native fibronectin
and laminin resulted in the identification of 2 and 3 cleavage products,
respectively. Digestion of the target protein with human neutrophil elastase,
a serine protease with broad cleavage specificity, resulted in the
identification of 68 peptides and were in good agreement to the known
elastase specificity. Interestingly, no peptide presented a basic residue in
P1, which is in accordance with published results. To compare the
performance of N-terminal sequencing and ATOMS, fibronectin was
digested separately with two enzymes of very broad cleavage specificity,
namely matrix metalloprotease (MMP)-2 and -8 and the samples were
analyzed using both methods. ATOMS identified 17 cleavage sites while 15
N-terminal sequencing reactions revealed 9 sites. Three cleavage sites
were common to both methods. A total of 23 cleavage sites were identified.
We can conclude that ATOMS can be used successfully to identify protease
cleavage site using difficult target proteins and proteases of broad cleavage
specificity. ATOMS performed better than the N-terminal sequencing when
proteolysis of complex, high molecular protein generated multiple cleavage
products, but the best results are achieved by a combination of both
methods.

Poster	21 - (Confirmation No. 2757)
Submitted by	John Kelly, NRC-Institute for Biological Sciences
Contributing Authors	Ally Pen, Tammy-Lynn Tremblay, Phuong Le, Maureen O'Connor-McCourt,
	Anne Lenferink
Abstract Title	Characterization of protein expression in LCM-captured vessels from
	matched tumour and non-malignant breast tissue.
Abstract	While several proteomic studies have used whole tumor tissue for protein expression analyses, relatively few have analyzed protein expression in a defined population of cells within the tissue (i.e. endothelial cells). These cells likely express markers/proteins that may be important for tumor pathogenesis. A few years ago we began to study the proteome of microvessels isolated by laser-capture microdissection (LCM) from matched non-malignant and tumor breast tissues (highly vascularized and invasive ductal carcinoma, grades 1-3). The analytical challenges were significant not the least of which has been adapting our analytical protocols to accommodate the tiny quantities of proteins typically provided by LCM. Using a combination of direct on-cap tryptic digestion of the LCM-captured microvessels coupled with label-free nanoLC-MS-based proteomic analysis, we have identified several proteins that are differentially expressed in non- malignant and breast tumor microvessels. A number of these proteins have been validated by immunofluorescence. Interestingly, differential protein expression was similar across the majority of the clinical samples analyzed. This study demonstrates the utility of using LCM-extracted microvessels coupled with protein profiling methods to identify potential vascular breast tumor markers.

Poster	22 - (Confirmation No. 2758)
Submitted by	Maryvonne Rosamont-Ursulet, UBC
Contributing Authors	Angus Murray, Miriam Lynn, W. Robert McMaster
Abstract Title	Elucidation of the role of the Leishmania mexicana A600.4 gene in the
	regulation of amastigote growth
Abstract	Leishmania, a protozoan parasite from the family Trypanosomatidae, is responsible for the disease leishmaniasis. This disease represents a major public health risk in many tropical and subtropical regions of the world and is endemic in 88 countries on 4 continents. There is currently an urgent need for new therapies against leishmaniasis; most anti-leishmanial drugs are costly and are becoming less effective and no effective vaccine is currently available. The parasite Leishmania has a two-stage life cycle. In the insect vector, Leishmania resides as uniflagellated promastigotes. After transmission to the mammalian host, promastigotes infect macrophages where they differentiate and replicate as amastigotes. There, the parasite can evade the immuno custom and paraits for a long time, resulting in the abronia
	symptoms of the disease. Because amastigotes are responsible for chronic infection of host cells in humans, research has been focused on the identification and functional analysis of amastigote-expressed genes. Elucidating their role in Leishmania persistence and pathogenesis may allow the identification of new strategies to control leishmaniasis. Comparison of global gene expression profiles between promastigotes and amastigotes indicates that very few genes are differentially expressed between the two stages. The A600.4 gene was identified as one of the rare genes upregulated at the amastigote stage in Leishmania mexicana. This led to the hypothesis that the A600.4 gene is important in amastigote development. Previous studies revealed that A600.4 is part of a gene
	cluster, A600, and focused on the characterization of this gene family. Current work is investigating the role of the A600.4 gene by identifying A600.4 interacting proteins, using the reductive dimethylation method. This may allow the identification of a new pathway in Leishmania that regulate amastigote proliferation and help in the development of new therapies.

Poster	23 - (Confirmation No. 2759)
Submitted by	Anna Prudova, Centre for Blood Research, UBC
Contributing Authors	Anna Prudova*, Ulrich auf dem Keller*, Christopher M. Overall
Abstract Title	Multiplex System-wide Discovery of Matrix Metalloproteinase Substrates
	and their Cleavage Sites
Abstract	Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases that
	play an important role in development, wound healing, normal tissue
	turnover and have been implicated in heart disease, cancer, arthritis and
	neurodegenerative diseases. Defining a complete list of each MMPs
	substrates, or degradome, is warranted, in order to understand many roles
	MMPs play in health and disease. Moreover, identification of exact location
	of cleavages is warranted as this determines functional outcome of
	proteolytic processing. To address these questions we developed Terminal
	Amine Isotopic Labeling of Substrates (TAILS), as a novel proteomic screen
	for substrate discovery using iTRAQ multiplex reagent protein labeling, and
	MMP-2 as a model protease.
	In the TAILS approach, the sample is enriched for N-terminal peptides of
	each protein. Specifically, the proteomes of two samples containing active
	and inactive protease (control) are first reduced, alkylated and labeled with

iTRAQ, which modifies lysine residues and protein N-termini. Following
mixing the sample in 1:1 ratio and trypsin digestion, the internal unblocked
peptides are selectively removed by an amine reactive polymer. The
remaining N-terminome fraction that consists of protein original N-termini
and proteolytically derived neo-N-termini is then analyzed by MS/MS. The
resulting datasets were searched against the IPI database using Mascot
and X!Tandem search engines and Trans Proteomic Pipeline (TPP).
Proteins secreted by fibroblasts derived from Mmp2 knockout mouse were
treated with MMP-2 in vitro and analyzed by TAILS approach. We identified
2200 peptides corresponding to 750 proteins including a number of known
MMP-2 substrates, thus validating the technique. The resulting MMP-2
cleavage site specificity was in excellent agreement with the previously
reported consensus sequence. We have also employed TAILS for in vivo
substrate discovery in murine skin. To induce inflammation and therefore
MMP activity, FVB/N wild type and Mmp2 knockout mice were treated with
12-O-tetradecanoyl-phorbol-13-acetate (TPA) or vehicle alone for 48 hours.
TAILS analysis of mouse skin yielded 719 peptides corresponding to 450
proteins. Identified MMP-2 substrates are being presently validated. A
cluster of ~50 proteins involved in inflammatory response was upregulated
by the TPA treatment. In conclusion, iTRAQ-TAILS approach enables a
multiplex analysis of protein N-termini, identification of protease substrates
with the corresponding cleavage sites, as well as annotation of proteome N-
terminal processing.
* These authors provided equal contributions to this work.

Poster	24 - (Confirmation No. 2760)
Submitted by	Grace Cheng, Genome Sciences Centre
Contributing Authors	SW. Grace Cheng, Michael A. Kuzyk, Annie Moradian, Sarah E. Vollett,
	Takaaki Ichu & Gregg B. Morin
Abstract Title	The CrkRS/CDK12 Kinase Complexes with a Novel Isoform of Cyclin K and
	Phosphorylates the C-terminal Domain of RNA Pol II
Abstract	CrkRS (Cdc2-related kinase, Arg/Ser), or CDK12, is a ser/thr kinase
	believed to coordinate transcription and RNA splicing. While CrkRS
	complexes were known to phosphorylate the C-Terminal Domain (CTD) of
	RNA Pol II, the responsible cyclin was not known. However, others showed
	that co-expression of CrkRS and Cyclin L could affect the alternative
	splicing of a model substrate. Using immunoprecipitation and mass
	spectrometry (IP-MS), we identified the protein constituents of endogenous
	CrkRS complexes. In addition to several spliceosome-related proteins, we
	identified a novel 65 kDa isoform of Cyclin K, whereas the known isoform is
	43 kDa. We did not observe Cyclin L. Previous studies using yeast-two
	hybrid and co-expression experiments identified CDK9 as a Cyclin K partner
	and that CDK9/Cyclin K could regulate transcription. Using IP-MS, we show
	that Cyclin K complexes isolated from mammalian cells contain CrkRS but
	do not contain CDK9, and that CDK9 complexes contain Cyclin T1 and not
	Cyclin K, within detection limits. The co-expression of CrkRS with either
	isoform of Cyclin K showed increased CTD kinase activity compared to
	controls. Our data suggest the primary cyclin partner for CrkRS is Cyclin K
	and that the Cyclin K/CrkRS complex phosphorylates the CTD.

Poster	25 - (Confirmation No. 2761)
Submitted by	Annie Moradian, Genome Sciences Centre
Contributing Authors	Annie Moradian, SW. Grace Cheng, Takaaki Ichu, Michael A. Kuzyk &

	Gregg B. Morin
Abstract Title	Analyzing CDK/Cyclin Sub-complexes by Multiple Reaction Monitoring
Abstract	CrkRS (Cdc2-related kinase, Arg/Ser), or CDK12 (Cyclin Dependent Kinase
	12), is a ser/thr kinase believed to coordinate transcription and RNA
	splicing. While CrkRS complexes were known to phosphorylate the C-
	Terminal Domain (CTD) of RNA Pol2, the responsible cyclin was not known.
	However, previous studies show that co-expression of CrkRS and Cyclin L
	could affect the alternative splicing of a model substrate. We have isolated
	CrkRS protein complexes and identified a novel 65 kDa isoform of Cyclin K
	in endogenous CrkRS protein complexes, whereas the known isoform of
	Cyclin K is 43 kDa. The MS/MS data contained spectra which were
	assigned to a tryptic peptide in an alternative Cyclin K open reading frame
	that could be generated by alternative pre-mRNA processing. We did not
	observe Cyclin L in CrkRS protein complexes by LC-MS/MS. Using Multiple
	Reaction Monitoring, we have analyzed CrkRS protein complexes for sub-
	complexes containing Cyclin K1, Cyclin K2 and Cyclin L1. Our MRM
	studies show that Cyclin L1 in not present in CrkRS protein complexes and
	that the predominant complex is CrkRS/Cyclin K1. CDKs are known to have
	multiple cyclin partners which may modulate its function. Using this method,
	we can look at the relative abundance of specific CDK/Cyclin complexes
	within a cell.

Poster	26 - (Confirmation No. 2762)
Submitted by	Robert Parker, UBC
Contributing Authors	Too long for here, so in the main body
Abstract Title	Apis mellifera Proteomics of Innate reSistance (APIS): Quantitative
	proteomic analysis of honey bee populations within Canada.
Abstract	Robert Parker1, Marta Guarna1, Amy Tam1, Nikolay Stoynov1, Andony
	Melathopoulos2, Stephen F. Pernal2 and Leonard J. Foster1. 1UBC Centre
	for Proteomics, University of British Columbia, Vancouver, BC, Canada.
	2Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada.
	The honey bee (Apis mellifera) is the most economically valuable pollinator
	of agricultural crops in the world today. Bees can suffer from a variety of
	diseases that can significantly reduce the health of the hive. In Canada the
	current bee colony losses are consistently 2-fold the normal long term
	trends. A major factor associated with increased losses has been parasitism
	by the mite varioa destructor, while American foulbrood (AFB) continues to
	be a disease of leading concern. Complex nost/pathogen relationships exist
	within the nive, and mechanisms have evolved allowing bees to tolerate information (Apply Epidemic 2000, $54:405\sqrt{6}$ C [°] Å(22). We have
	intestation (Annu. Rev. Entonioi. 2009. 54.405 V(¢, Ç, Au25). We have
	selected diverse populations of bees in Canada and are investigating the
	aim is to identify and quantitate protein biomarkers that are expressed in
	bee populations exhibiting desirable physiological and behavioural
	characteristics. In order to carry out the global analysis of the bee proteome
	we are developing tools enabling us to efficiently identify and quantitate
	hundreds of proteins across multiple bee tissues. Analysis of protein
	expression data will be insightful for understanding the distribution of
	phenotypes within breeding bee populations, provide markers for selection
	of disease resistance and suggest novel hypotheses for molecular
	mechanisms of disease resistance.

Poster	27 - (Confirmation No. 2763)
Submitted by	Fang-Xiang Wu, University of Saskatchewan
Contributing Authors	Jiarui Ding ¹ , Guy G.Poirier ² and Fang-Xiang Wu ^{1, 3}
	¹ Department of Mechanical Engineering, University of Saskatchewan, 57
	Campus Dr., Saskatoon, SK, S7N 5A9, Canada ² Health and Environment
	Unit, Laval University Medical Research Center (CHUL), Faculty of
	Medicine, 2705 Boul. Laurier, Quebec, QC, GIV 4G2, Canada ³ Division of
	Biomedical Engineering, University of Saskatchewan, 57 Campus Dr.,
	Saskatoon, SK, S7N 5A9, Canada
Abstract Title	A real-time control workflow for tandem mass spectrum acquisition
Abstract	Tandem mass spectrometers often generate redundant spectra consisting
	of multiple spectra of the same peptides as well as un-interpretable poor
	quality spectra. To improve the efficiency and accuracy of mass
	spectrometry, a real-time control workflow is proposed to select peptide ions
	for further fragmentation and acquire tandem mass spectra for peptide
	identification. After a tandem mass spectrum is generated, a trained
	classifier is used to predict the quality of the spectrum. If the spectrum is a
	high quality spectrum, it is putted into a 'dynamic exclusion list'. The peptide
	ions of the spectra in the exclusion list will not be selected for further
	fragmentation for a while. Therefore, the chance for producing redundant
	spectra is decreased. As time elapses, the spectra in the dynamic exclusion
	list will be updated accordingly. In addition, only the high quality spectra are
	used for peptide identifications and thus much time is saved for not
	identifying the un-interpretable poor quality spectra. We simulate the
	proposed workflow and the results are very promising. This workflow will be
	a key component for the development of real-time control methodologies of
	spectrometers.

nd a six technical replicates was collected. Upregulated proteins were
erified by LC-MRM and, in some cases by Western blot analysis. In vitro
alidation using wound healing and Matrigel invasion assays was also
erformed. The biomarkers that were verified by in vitro assays were then
sed to construct a quantitative model of the invasive phenotype. LC-MRM sing the mTRAQ \sqrt{c} Å \hat{u} $\neg c$ reagents was then used to follow the temporal
ehavior of these biomarkers following knockdown with siRNA. This system
llows for the perturbation of the system and monitoring of biomarkers
hose expression changes in a coordinated fashion upon siRNA treatment.
this way, biomarkers that are regulated in a similar manner or in the same
ochemical pathway could be identified. Overall the combination of knock
own using siRNA and targeted LC-MRM analysis is a powerful method for
ragging out the valid biomarkers from large proteomic analysis.

Poster	29 - (Confirmation No. 2767)
Submitted by	Jason Serpa, University of Victoria Proteomics Centre
Contributing Authors	Jason Serpa; Evgeniy Petrotchenko; Christoph Borchers
Abstract Title	Use of N-terminal modification with isotopically coded reagents and
	crosslinkers for selective identification of inter-peptide crosslinks
Abstract	Crosslinking combined with mass spectrometry has great potential for
	determining three-dimensional structures of protein and protein assemblies.
	One of the main analytical challenges of the method is the problematic
	specific detection and identification of the most informative (providing
	distance information) inter-peptide crosslinks in the peptide mixture obtained
	from enzymatic digestion of the crosslinked protein complex. We use N-
	terminal modification (NTM) with isotopically coded reagents, first proposed
	by Chen et al. (1999) in combination with isotopically coded crosslinkers
	(ICCL), for specific detection of interpetide crosslinks. Interpeptide
	crosslinks contain two amino termini, and, upon ICCL combined with NTM,
	exhibit a distinct isotopic signature (doublets of √¢,Ǩ≈ìtridents√¢,Ǩ¬ù of
	peaks with 1:2:1 intensity ratios). By using this signature, we can exclude
	most of the cumbersome free peptides, dead end crosslinks, and
	intrapeptide crosslinks from further analysis. In-house software was
	developed to compare ICCL and ICCL + NTM reactions in parallel and to
	produce a list of potential inter-peptide crosslinks. By combining ICCL with
	NTM, and using our software, we have developed a method for the rapid
	generation of a small and manageable list of interpeptide crosslink
	candidates that can be quickly confirmed by MSMS analysis.

Poster	30 - (Confirmation No. 2769)
Submitted by	Georgina Butler, UBC, Life Science Institute
Contributing Authors	Georgina S. Butler, Richard A, Dean, Eric Tam and Christopher M. Overall
Abstract Title	Pharmacoproteomics to validate MT1 MMP-mediated protein shedding
	using a hydroxamate inhibitor
Abstract	A systems biology approach to drug target validation is desirable to identify
	potentially unpredictable effects on the proteome. Here we present a
	quantitative proteomic evaluation of the targets and effects of the broad
	spectrum MMP inhibitor (MMPI) AG3340 (Prinomastat) on human MDA-MB-
	231 breast cancer cells transfected with the membrane-type 1 matrix
	metalloprotease (MT1-MMP). Proteins in conditioned medium and
	membrane fractions that were affected by the MMPI were identified by
	isotope-coded affinity tag (ICAT) labelling and tandem mass spectrometry. A
	reduction in shedding or release of proteins from pericellular sites in the

and a second of the NANADI led to the identification of a number of a such NANAD 44
presence of the MMPI led to the identification of a number of novel MMP-14
substrates. We demonstrate that a pharmacoproteomic screen such as this
can identify key molecules and pathways which are affected by a drug that
may be useful for prediction of drug side-effects, as well as the identification
of novel substrates which may be therapeutic targets.

Poster	31 - (Confirmation No. 2770)
Submitted by	Carthene Bazemore-Walker, Brown University
Contributing Authors	Hongbo Gu
Abstract Title	Analysis of the Human Sigma-1 Receptor and Its Interacting Proteins Using
	Chemical Proteomics
Abstract	The human sigma-1 receptor (Sig-1R) mediates a prosurvival signaling
	pathway and has been implicated in processes associated with cancer,
	cardiovascular disease, and neurological disorders. Due to its involvement
	in a multiplicity of (patho)physiological pathways, this membrane-bound
	receptor is an important potential target for therapeutic intervention.
	Comprenensive characterization of the receptor at the protein level, which
	madification (DTM) or aming acid deviations from the gone acqueres. This
	information is paced any for rational drug development and understanding
	the functional diversity of Sig 1P. To this and we have developed a
	technique that not only allows for the characterization of native Sig-1Rs, but
	also facilitates identification of its binding partners. Our methodology could
	easily be adapted for broader use.
	An affinity resin was prepared by coupling reduced-haloperidol (RHAL), a
	known Sig-1R ligand, to an epoxide activated silica bead. Sig-1R was
	affinity-purified from membrane extracts derived from MCF7 breast cancer
	cells stably-transfected to overexpress the human Sig-1R (referred to as
	Line 41). The purified proteins bound to the affinity resin were subjected to
	on-bead digestions using trypsin, chymotrypsin, or Glu-C in the presence of
	RapiGest or urea. The resulting peptides were analyzed using LC-MS/MS.
	Low-passage, wild-type MCF7 cells, which do not express Sig-1R mRNA or
	protein, served as the negative control.
	Using this RHAL-resin, nonspecific interactions were minimized and
	purflication efficiency was superior when compared to traditional
	antidos concreted from on bood dispetiens, approximately 24% of the Sig
	1P primary amine acid sequence was characterized including putative
	transmembrane domain regions and the cholesterol-hinding site. In addition
	a novel oxidation site at tryptophan 81 was detected. Furthermore, proteins
	affinity-purified from the Sig-1R+ cell line (Line 41) and from the Sig-1R cell
	line (MCF7 cells) were compared and 48 potential binding partners of Sig-
	1R were identified, including a known interactor (the endoplasmic reticulum
	chaperone protein, BiP).

Poster	32 - (Confirmation No. 2772)
Submitted by	Hui Qiao, UBC
Contributing Authors	Hui Qiao, Victor Spicer, Werner Ens
Abstract Title	The effect of fluence and spot size on sensitivity in MALDI
Abstract	The influence of incident laser parameters on sensitivity in MALDI has been
	investigated using an orthogonal-injection TOF instrument. A qualitative
	comparison was first made between the beam profiles obtained with a N2
	laser and a Nd:YAG laser using fibre optics. The N2 laser gives better

sensitivity, consistent with broader features and therefore better coverage in
the N2 laser profile. Most of the difference disappears when the fibres are
twisted during irradiation to smooth out the fluence distribution. In more
systematic measurements, the total integrated ion yield from a single spot (a
measure of sensitivity) was found to increase rapidly with fluence to a
maximum, and then saturate or decrease slightly. Thus, the optimum
sensitivity is achieved at high fluence. For fluence near threshold, the
integrated yield has a steep (cubic) dependence on the spot size, but the
saturation fluence is higher for smaller spots. The area dependence is much
weaker (close to linear) for fluence values above saturation, with the result
that the highest integrated yields per unit area are obtained with the smallest
spot sizes.

Poster	33 - (Confirmation No. 2773)
Submitted by	Werner Ens, University of Manitoba
Contributing Authors	Hui Qiao, Gamini Piyadasa, Victor Spicer, Werner Ens
Abstract Title	Analyte distributions in MALDI samples using MALDI imaging mass
	spectrometry
Abstract	The analyte distribution in MALDI matrices has been studied using MALDI imaging at 10 \sqrt{Q} µm spatial resolution in an orthogonal-injection TOF instrument. The technique is demonstrated by mapping the analyte distribution on typical preparations of MALDI samples using the common matrices 2,5-DHB, sinapinic acid and \sqrt{e} ±-HCCA, showing evidence of exclusion of impurities, and that smaller matrix crystal size gives better reproducibility from spot to spot. Large single crystals of DHB and sinapinic acid were grown to examine the incorporation of analytes within the crystals. Purified protein analytes were found to be homogenously incorporated in both types of crystal, with no evidence for preferred crystal faces. The distributions of analytes in simple mixtures in single crystals of DHB were also examined. Segregation of some species was observed and appeared to correlate with analyte hydrophobicity, and to a lesser extent analyte mass or mobility. Similar segregation phenomena were observed with confocal laser scanning microscopy of the same analytes labeled with fluorescent dyes in 2,5-DHB single crystals. The above investigations may shed some
	light on optimizing sample preparation with different matrices.

Poster	34 - (Confirmation No. 2774)
Submitted by	Charlotte Morrison, UBC
Contributing Authors	Stephanie Mancini, Jane Cipollone, Reinhild Kappelhoff, Calvin Roskelly
	and Christopher Overall
Abstract Title	Microarray and Proteomic Analysis of Breast Cancer and Osteoblast Co-
	cultures: Role of Matrix Metalloproteinase (MMP)-13 in Bone Metastasis
Abstract	Proteases and in particular matrix metalloproteinases (MMPs) play a pivotal
	role in tumor metastasis through modulation of tumor growth, angiogenesis
	and invasion. The cellular origin of these proteases is not always clear with
	both tumors and stroma contributing to the protease repertoire. Our goal is
	to characterize the interaction between metastatic breast cancer tumors and
	the bone microenvironment and the resulting changes in the protease
	repertoire. We use an in vitro 2-dimensional culture system in which the
	highly invasive human breast cancer cell line MDA MB 231 (MDA 231) and
	a sub-population 1833 (MDA 1833) derived by in vivo passaging with
	increased propensity for metastasis to bone, were overlaid onto a
	monolayer of differentiated osteoblast (MC3T3-E1) cells. The changes in the

complete protease and inhibitor expression profile induced upon co-culturing
of these cells were determined using the dedicated murine and human
specific microarray chips (CLIP-CHIP√¢,Äû¬¢). An increase in MMP-13
mRNA expression was consistently observed when osteoblast cells were
co-cultured with either MDA MB 231 or 1833. The elevation in osteoblast
derived MMP-13 was observed when the co-cultured cells were in direct
contact, separated by filters or when conditioned medium derived from the
MDA MB 231 or 1833 was added, indicating the involvement of soluble
factors. Changes in mRNA and protein expression were confirmed by QRT-
PCR and Western blot analysis respectively. Proteomic analysis using
differential iTRAQ labeling and multidimensional liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS) revealed changes in
the osteoblast secreteome upon elevation of MMP-13 levels and several
novel potential MMP-13 substrates were identified. Our findings
demonstrate the influence that metastatic breast cancer cells can have upon
the osteoplasts, potentially manipulating the microenvironment to enhance
the growth of metastases. Flucidating the dynamic relationship between
breast cancer tumors and the microenvironment is essential to
understanding this metastatic process

Poster	35 - (Confirmation No. 2776)
Submitted by	H. Alexander Ebhardt, Dep't of Biochemistry
Contributing Authors	H. Alexander Ebhardt, Angela W. Fung, and Richard P. Fahlman
Abstract Title	Investigating the reaction mechanism and biological function of
	leucinyl/phenylalanyl tRNA protein transferase by Mass Spectrometry.
Abstract	Leucinyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes
	the transfer of an esterified amino acid from tRNA(Leu) or tRNA(Phe) to
	polypeptides with an N-terminal lysine or arginine amino acid. Investigating
	this class of enzyme, which catalyze a reaction analogous to that of the
	ribosome, may provide insight into the still controversial aspects of ribosome
	catalyzed peptide bond formation. Currently investigations of these
	enzymes have been restricted as a result of limitations to current assay
	methodologies. We have recently developed a method to quantify L/F
	transferase activity that utilizes stable isotope labelling and quantitative
	(MAL DL ToF) mass encetrometry [1]. We present the initial investigations of
	(MALDI-TOF) mass spectrometry [1]. We present the initial investigations of the wild type L/E transference in percented with a series of mutations to construct
	acid 186 which has been proposed to be critical for catalysis
	Prokaryotic L/E transprases have been proposed to be involved in N End
	rule protein degradation but to date there are no known in vivo substrates of
	the enzyme. To address this issue we have begun to apply proteomic
	approaches to understand the biological role of L/E transferases. With
	affinity purification protocols using L/E transferase as a bait molecule, we
	have identified several proteins by LC-ESI-MS/MS that associate with L/F
	transferase, some of which may potentially lead us to the function of L/F
	transferase in vivo.
	Reference:
	[1] Ebhardt,H.A., Xu,Z., Fung,A.W., Fahlman,R.P.: Quantification of the
	Post-Translational Addition of Amino Acids to Proteins by MALDI-TOF Mass
	Spectrometry. Anal. Chem. (2009) 81 1937-1943.

Poster	36 - (Confirmation No. 2777)
Submitted by	Jae Kyung Myung, BC Cancer Agency
Contributing Authors	Michael Kuzyk, Dorothy Cheung, Allen Delaney, Christoph Borchers and
	Marianne
Abstract Title	Quantitative Large-scale Phosphoproteome Dynamics in Rapid Signaling by
	Androgen
Abstract	Differentiation and function of the prostate, as well as prostate cancer
	growth and survival are dependent upon androgen. Androgens regulate
	gene transcription by binding to the androgen receptor (AR), which acts as
	ligand-dependent transcription factor (genomic signaling). Androgen can
	also cause rapid activation of protein-kinase cascades through
	nongenotropic (nongenomic) signaling. These rapid steroid actions are
	mainly transmitted by phosphorylation events. Nongenotropic signaling has
	there are no reports of large apple analysis of the pheepheristeeme
	induced by storoid uptil boro. We have implemented Stable isotope labeling
	with amino acids in cell culture (SILAC) for large scale proteomics coupled
	to L C-MS/MS to extract unbiased and quantitative data L NCaP human
	prostate cancer cells were metabolically labeled prior to stimulating with
	dihydrotestosterone or vehicle at various time points. Phosphopeptides
	enriched by TiO2 were analyzed by LC-MS/MS to quantify and identify
	peptides with differential phosphorylation states in response to
	dihydrotestosterone. A total of 700 peptides defining 770 phosphorylation
	sites were determined. Of these, 641 were singly phosphorylated, 53 doubly
	phosphorylated, and 5 with >2 phosphorylated sites. Bioinformatic analysis
	revealed that 129 of these sites contain the phosphorylated motif pS/T-X-X-
	E which may indicate the importance of casein kinase 2 in rapid signaling.
	Identification of kinases and key substrates may yield new targets for the
	treatment of prostate cancer and other androgenic diseases.

Poster	37 - (Confirmation No. 2778)
Submitted by	Jun Song, Agriculture and Agri-Food Canada
Contributing Authors	Jun Song, Qifa Zheng, Leslie Campbell, Elden Rowland, Ken Chisholm,
	Devanand M. Pinto, David M.Byers
Abstract Title	Proteomic analysis of protein changes in fruit ripening using amine-specific
	isotopic labeling, two-dimensional electrophoresis and LC-MS/MS
Abstract	Proteomics is a systematic approach to study changes in proteins, providing
	an essential linkage between the transcriptome and metabolome. In the past
	few years, our research group has established a gel-based proteomic
	research platform as well as non-gel quantitative proteomic tools to study
	fruit ripening, quality and nutrition. The purpose of this study is to summarize
	the major research developments in fruit proteomic research. Total protein
	extracted from fruit tissues was separated based on protein iso-electric point
	and size. Due to low protein content and the presence of interfering
	substances, protein extraction and sample preparation are the most critical
	step in the two-dimensional electrophoresis (2-DE) proteomic study of fruit.
	Sample preparation and protein extraction protocols have been compared
	and optimized for apple, strawberry and banana fruit. With established,
	reliable and effective protein extraction procedures, protein profiles from
	apples and strawberry fruit at different developmental stages have been
	investigated. Significant changes in protein population in relation to fruit
	ripening and senescence have been shown. Protein that may regulate these
	processes have also been located and excised from gels and identified
	using a LC/MS/MS. In addition, a non-gel proteomic tool using amine-

specific isotopic labeling was also modified to study protein population in
apple fruit ripening. Examples of using these proteomic approaches to
identify allergens from apples and strawberry fruit during fruit ripening are
also shown. The challenges and limitations of using proteomic analysis on
fruits and vegetables will be discussed.

Poster	38 - (Confirmation No. 2779)
Submitted by	Juan Chavez, Oregon State University
Contributing Authors	Woon-Gye Chung, Cristobal L. Miranda, Jan F. Stevens and Claudia S.
	Maier
Abstract Title	Mass Spectrometric Identification of 4-Hydroxynonenal Modified Proteins in
	THP-1 cells: Protective effects of Ascorbic Acid.
Abstract	Introduction:
	Excessive production of reactive oxygen species can lead to lipid
	peroxidation resulting in accumulation of lipid peroxides which decomposes
	to aldehydic end products such as 4-hydroxy-2-nonenal (HNE). It has been
	snown that ROS is elevated in atheroscierotic plaques suggesting an
	progression of atherosclerosis and associated vascular diseases
	HNE is an unsaturated alkenal that can react with nucleophilic sites in
	proteins and DNA vielding Michael adducts and in some cases a Schiff
	base with Lvs residues. Covalent modifications of proteins by reactive lipid
	aldehydes may lead to impairment of protein function and disruption of the
	cellular structure. Our previous studies have demonstrated that exposure of
	THP-1 monocytic cells to HNE caused the formation of protein carbonyls
	and that ascorbic acid (Asc) pretreatment lessened the formation of protein
	carbonyls in the HNE-treated cells detected by ELISA using anti-DNPH
	antibody (Miranda et al., 2009). However, the nature of the carbonylated
	proteins produced in HNE-treated THP-1 cells or sites of modification by
	Labeling of a Michael type HNE protein conjugate with an aldebyde reactive
	probe (APP) and analyzing the labeled pentides by MALDI TOF/TOF and
	TO-FT mass spectrometry
	Methods:
	THP-1 cells were cultured and incubated with or without 1mM ascorbate and
	100 HNE. HNE modified THP-1 cell proteins were labeled with ARP and
	enriched as described by Chavez et al. (2006). The enriched ARP peptide
	fraction was concentrated using vacuum centrifugation before being
	fractionated by reverse phase liquid chromatography and spotted to a
	MALDI target plate using the LC-Packing Ultimate nano-LC system coupled
	with a Probot. Mass spectrometry was performed using an Applied
	Biosystems 4700 MALDI-TOF/TOF instrument and a Thermo Scientific
	LIQ-FI Ultra. Mascot was used to search the MS/MS data against the
	swiss Prot database inflited to Human taxonomy. Tandem mass spectra of
	verification of the sequence and modification Additionally 1 and 2D
	electrophoresis and Western Blot analysis were performed using
	monoclonal anti-HNE antibodies to visualize HNE modified proteins.
	Preliminary data:
	Immunoblot analysis using monoclonal anti-HNE antibodies showed
	eighteen proteins as potential targets for HNE adduction. The levels of these
	HNE-protein adducts were reduced by ascorbic acid pretreatment of THP-1
	cells. Using mass spectrometry the sites of HNE modification were
	identified at Cys residues in 12 proteins and at His residues in four proteins,

some of which are considered new sites of HNE modification in proteins, e.g., Cys 295 in tubulin chain, Cys 499 and Cys 351 in actinin-4, Cys 328 in vimentin, Cys 369 in D-3-phosphoglycerate dehydrogenase, and His 246 in fructose-bisphosphate aldolase A. These results show for the first time the protein targets for HNE modification in THP-1 cells and the potential of ascorbic acid pretreatment in preventing HNE-protein adduct formation in
these cells.
 (1) Miranda, C. L.; Reed, R. L.; Kuiper, H. C.; Alber, S.; Stevens, J. F., Ascorbic Acid Promotes Detoxification and Elimination of 4-Hydroxy-2(E)-nonenal in Human Monocytic THP-1 Cells. Chem Res Toxicol 2009. (2) Chavez, J.; Wu, J.; Han, B.; Chung, W. G.; Maier, C. S., New role for an old probe: affinity labeling of oxylipid protein conjugates by N'-aminooxymethylcarbonylhydrazino d-biotin. Anal Chem 2006, 78 (19), 6847-54.

Poster	39 - (Confirmation No. 2780)
Submitted by	Ulrich auf dem Keller, University of British Columbia
Contributing Authors	Anna Prudova, and Christopher M. Overall
Abstract Title	Skin inflammation degradomics: on the search for MMP-2 substrates
Abstract Title Abstract	Skin inflammation degradomics: on the search for MMP-2 substrates Proteolysis is a major component of inflammatory processes that contribute to onset and progression of diseases such as arthritis and cancer. To better understand underlying mechanisms it is crucial to analyze proteolytic processing in complex biological systems. Here we applied Terminal Amine Istotopic Labeling of Substrates (TAILS), a novel proteomic platform for quantitative N-terminome analysis, to the global analysis of proteolysis in TPA (12-O-tetradecanoyl-phorbol-13-acetate) induced skin inflammation. First, we developed and successfully tested a mass spectrometry- compatible protein isolation and purification method for total skin lysates. Applying this method we identified 1569 proteins with high confidence from murine skin samples. In the same experiment we used TAILS to identify MMP-2 substrates in normal and inflamed skin. Wild-type and Mmp2-/- animals were treated with TPA, skin lysates were prepared and subjected to TAILS, comparing their N-terminomes to untreated controls of each genotype. We identified 1783 N-termini from 1087 proteins with a statistically significant enrichment of inflammation-related categories by Gene Ontology (GO) analysis of proteins upregulated upon TPA treatment. Among those proteins were low abundance chemokines like small inducible cytokine B5 (LIX) and macrophage inflammatory protein 2 (MIP2). Notably, the analyses were neither skewed by proteins that are highly abundant in skin, such as keratin and filaggrin, nor by serum proteins (only 23 identified). Serum amyloid A1 protein was identified by a neo-N-terminus four amino acids downstream of the mature N-terminus, which was only present in wild- type skin treated with TPA but not in skin from animals lacking MMP-2. This defines serum amyloid A1 protein as a unique MMP-2 substrate, the cleavage of which is not compensated for by other proteases in vivo. On the global level we identified a higher percentage of proteolytically processed proteins in inflam

Poster	40 - (Confirmation No. 2781)
Submitted by	Caroline Bellac, Centre for Blood Research, UBC
Contributing Authors	Caroline L. Bellac, Christopher M. Overall
Abstract Title	Proteomic identification of macrophage-related substrates of matrix
	metalloproteinase Changing the substrate repertoire by triggering
	inflammation
Abstract	Matrix metalloproteinase 12 (MMP-12) is a macrophage specific elastase.
	Through the precise cleavage of ELR+-CXC chemokines at E-LR, the
	critical receptor-binding motif and the specific processing and inactivation of
	the monocyte chemotactic proteins CCL2, 7, 8, and 13 at position 4-5,
	MMP-12 has been shown to be involved in regulating the recruitment of
	Immune cells, such as neutrophils and macrophages to the site of tissue
	damage (or infection). To further study the role of MMP-12 in regulating
	initiammation, particularly the macrophage activity, we used a multiplex
	by tandom mass spectrometry Raw 264.7 cells were stimulated with TNE
	for 24 h in order to mimic an inflammatory stimulus, or treated with medium
	only as the control condition, 500 of secretome of each condition were
	inclubated with exogenous recombinant MMP-12 at a ratio 1:100 or with
	buffer only so generating four different conditions to be compared by
	labeling the proteins of each condition separately at the N-termini with four
	different isotopic iTRAQ-labels. Tandem-mass-spectrometry analysis in
	combination with database searches enabled the identification and
	guantification of MMP-12 generated cleavage fragments that occurred in the
	protease-treated samples with a higher intensity compared to the buffer-
	treated controls. We identified 2200 peptides in the combined sample, half
	of which with a ratio >10 in the protease treated samples compared to the
	controls. In the samples without MMP-12 addition, 50 peptides showed an
	increased abundance upon TNF stimulation, pointing at the fact that TNF
	upregulates proteins or triggers proteolysis so that the spectrum of
	candidate substrates may vary under inflammatory conditions. We now
	repeated the experiment in vivo by injecting thioglycolate intraperitoneally
	into MMP-12 deticient and wildtype mice to recruit macrophages into the
	peritoneal cavity. By isotopic labeling of the proteins present in the different
	peritoneal washes, we will identify the macrophage-related MMP-12 specific
	cleavage products occurring only in the wildtype mice and thus confirm
	candidate substrates found in vitro in the in vivo model.

Poster	41 - (Confirmation No. 2782)
Submitted by	David Golub,
Contributing Authors	Swapan Roy, Ph.D. (Chief Scientific Officer) Matthew Kuruc
Abstract Title	Molecular Profiling With SeraFILE™: Sub-Proteome Pools with both
	Differential Constituents and Activity States
Abstract	The SeraFILE™ platform – a proprietary, surface-based separations
	reagent set and associated exploratory protocols - addresses problems of
	functional proteomic prospecting. Clients and collaborators exploit its
	usefulness for low-abundance enrichment and prospecting as an adjunct to
	conventional methods, i.e., Immunoassay and Mass Spec. Preliminary data
	has established that SeraFILE™ can differentiate conformational variants,
	suggesting even the characterization of sub-unit equilibrium. Collaborations
	of interest center around conformational differentiation within specific protein
	groups of pharmacological importance (e.g., p-53, Proteasome, Kinases,

Unfolded Protein Response). SeraFILE™ encompasses innovations in
surface chemistry and associated process methods that obviate the need for
any bio-engineering, greatly reducing cost and increasing throughput.
SeraFILE [™] separations and protocols are seamless with existing proteomic
assay and detection infrastructure. Unique sub-proteomes are generated
efficiently and in parallel, while maintaining the functional characteristics that
define the conformational variability associated with a crude soluble protein
sample.

Poster	42
Submitted by	Brinda Shah, University of Victoria Proteomics
Contributing Authors	Brinda Shah1, 2, Jennifer D. Reid1, 2, Dan Holmes3, Christoph H.
	2Department of Riochemistry & Microhiology University of Victoria Victoria
	BC, 3St. Paul's Hospital, Vancouver BC
Abstract Title	Development of an Immuno Tandem Mass Spectrometry (iMALDI) Assay for the Analysis of Biomarkers from Clinical Samples
Abstract	iMALDI (immuno-MALDI) is a mass spectrometry-based method combining antibody affinity enrichment, stable isotope labeled standards, and MALDI mass spectrometry for highly sensitive, specific and quantitative analysis of target molecules. Custom synthesized isotopically labeled peptides are spiked into clinical samples as internal standards. Anti-peptide antibodies are immobilized on magnetic Protein G Dynabeads and used to immunoprecipitate endogenous target peptides and the isotopically labeled internal standards from human plasma. Antibody conjugated beads with bound peptides are analyzed directly on a target plate using a MALDI mass spectrometer to detect and absolute quantify endogenous peptides with high specificity in MS and MS/MS modes. Application of the iMALDI approach to the detection and quantitation of epidermal growth factor receptor (EGFR) isoforms in cancer cell lines and determination of plasma renin activity in human plasma for the diagnosis of hypertension indicates several advantages afforded by the approach including: improved limit of detection of MALDI mass spectrometry; provision of the specificity required to distinguish between isoforms; and multiplexed analysis of clinically relevant markers in complex clinical samples. High sensitivity in tissue (<100 cells) and plasma (pg/mL) is achievable with only small sample volumes (20 uL) and good linearity (correlation coefficient of 0.995) demonstrate clinical utility.

Poster	43
Submitted by	Edward Lau, Simon Fraser University
Contributing Authors	Edward G.M. Lau, Xin Zhou Hu, George R. Agnes
Abstract Title	Identification of Secreted Proteins from Lung Cells (A549) Dosed with
	Designed Particulate Matter in vitro
Abstract	Epidemiological studies have indicated that the inhalation of ambient particulate matter (PM) induce inflammation in the lung, which may lead to many other diseases. When lung cells are injured, signalling proteins are secreted to initiate the inflammation process. What remains unclear is the role of the chemical composition on the over all toxicity of PM. To better study the effects of chemical composition, solutions of known composition are dispensed into a levitation trap to form PM of known composition. Particles are then deposited onto cultures of lung cells, and have the
	resulting supernatant collected for analysis. Analysis by Matrix Assisted

Laser Desorption Mass Spectrometry (MALDI-MS) show differential expression of bio-molecules between negative controls and cultures dosed with as few as 20 particles. Tandem mass spectrometry of supernatant
digested with trypsin has identified the chemokine protein CXCL-5 in cultures when injury is induced. Once proteins have been identified,
MALDI-MS has the potential to screen samples for specific protein
expressions quickly.